<u>19EC3503 - Control Systems Engineering</u>

Course Code	19EC3503	Year	III	Semester	Ι
Course	Program Core	Branch	ECE	Course Type	Theory
Category					
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Classify control systems and represent in various models (L2)				
CO2	Apply standard test signals to a system to determine their characteristics (L3)				
CO3	Make use of stability concepts to obtain the desired characteristics (L3)				
CO4	Determine the characteristics of a linear control system using various time and frequency				
	domain tools (L5)				
CO5	Examine the system behaviour using various stability analysis techniques (L4)				

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3	2			1	1	1		1	2	1
CO2	2	3	2	2	3			2	3	1		2	2	1
CO3	3	2	3	3	2			1	1	2		1	3	2
CO4	2	3	2	2	3			2	2	1		1	2	2
CO5	3	3	3	2	2			1	1	2		1	2	1
Average* (Rounded to nearest integer)	3	3	2	2	2			1	2	1		1	2	1

Syllabus			
Unit No.	Contents	Mapped CO	
Ι	Introduction: Concepts of control systems. Examples of control systems, classification of control systems, Block diagram algebra, Representation by Signal flow graph. Reduction using Mason's gain formula. Feedback Characteristics, Effects of feedback. Mathematical modelling of systems – Electrical, mechanical translational and rotational systems.	CO1	
П	Time Domain Analysis: Standard test signals, Time response of first and second order systems with standard input signals, Time domain specifications, steady state error and error constants. Effects of P, PI, PD and PID Controllers.	CO2, CO3	

III	Stability Analysis in S-Domain: Concept of stability, Routh Hurwitz criterion. Construction of Root locus. Effects of adding poles and zeros	CO3,CO4,CO5
	to open loop transfer function on the root loci.	
IV	Frequency Response Analysis: Correlation between time and frequency responses. Determination of frequency domain specifications, Gain margin and Phase margin -Stability Analysis from Bode Plots, Polar plots and Nyquist plots.	CO3CO4,CO5
V	State variable analysis: State, State variables, State variable representation, State variable form from Transfer function (Diagonal form), transfer function from State variable form, State transition matrix, properties of state transition matrix, Controllability and Observability	COI

Learning Resources

Text Books

1. M.Gopal, "Control Systems Engineering", 3/e, Wiley Eastern Ltd., TMH, 2008

2. Benjamin C.Kuo, "Automatic Control Systems" ,7/e , Prentice Hall of India, 1997.

Reference Books

- 1. Ogata, "Modern Control Engineering" , 2/e, Prentice Hall of India.,2011
- 2. R.C. Sukla, "Control Systems", 3/e, Dhanpatrai and Sons, 1998
- 3. Control Systems Engg., Nise-John wiley, 3rd Edition 2000

e- Resources & other digital material

- 1. 1. <u>https://www.udemy.com/topic/control-systems/</u>
- 2. <u>https://ebooks.schandpublishing.com/detail/principles-control-system/9788121917780</u>
- 3. https://library.villanova.edu/Find/Record/1437935/TOC